
The Busy Beaver Problem

Computability and Logic

The Busy Beaver Problem

• n: number of states
• M(n): set of TM’s with n states and binary

alphabet (only 0’s and 1’s)
• [k]: Configuration of having a block of k

consecutive 1’s on an otherwise blank (all 0) tape,
and with head at leftmost 1.

• e: empty tape (all 0’s)
• Σ(M): Σ(M) = k if machine M, when started on e,

halts with [k]. Otherwise, Σ(M) = 0.
• Busy Beaver Problem: Find Σ(n) = max {Σ(M) | M
∈ M(n)}

Variations
• We can define a variety of Busy Beaver problems:

– Do we use the quadruple or quintuple formalization?
– Do we use a binary alphabet or more than 2 symbols?
– How does the machine come to a halt?

• Explicit halting state: machine halts by a transition to an explicit
halting (in which case halting state does not get counted towards n)

• Implicit halting state: machine halts by the lack of a transition for
current state and symbol

– Are there any restrictions on the output configuration?
• Standard configuration: head positioned at leftmost 1 (or other non-

blank symbol) of consecutive string of 1’s on otherwise empty tape
• Anything goes (head does not need to be at leftmost 1, and 1’s may be

scattered all over tape)

• For now, let’s stick to a binary alphabet and require a
standard configuration. But all proofs on the next slides
can be modified to accommodate all other types.

Σ(n) is Turing-Uncomputable

• Proof by Contradiction: Suppose there is some
Turing-Machine Σ that computes Σ(n). Then
consider the following Turing-machine Q, where k
is the number of states of the last 3 components:

Σ +1 Double Write k

Q

e [k] [2k] [Σ(2k)] [Σ(2k) +1]

Can be implemented using k states. So, Q has 2k states …
and outputs Σ(2k) +1 when started on an empty tape! Whoopsie!

The Shifting Problem

• S(M): S(M) = m if machine M, when started on e,
takes m steps before it halts with [k] for some k.
Otherwise, S(M) = 0.

• Shifting Problem: Find S(n) = max {S(M) | M ∈
M(n)}

S(n) is Turing-Uncomputable

• Proof by Contradiction: Suppose there is some
Turing-Machine S that computes S(n). Then
consider the following Turing-machine Q, where k
is the number of states of the last 3 components:

S Clean Double Write k

Q

e [k] [2k] [S(2k)] e

Cleaning the tape will take at least S(2k) steps. So, Q has 2k states
…but takes more than S(2k) steps before halting! Whoopsie!

S(n) is Uncomputable:
Alternative Proof

• The uncomputability of S(n) can also be
derived from the uncomputability of Σ(n):

• Suppose S(n) is computable. Then Σ(n) can
be determined simply by running all of the
finitely many Turing-machines M with n
states, starting on e. If a Turing-machine is
still running after S(n) steps, you know it is
a non-halter. For all the others Σ(M) can be
determined, and now simply take the max.

Computability, Uncomputability,
and the Church-Turing Thesis

• Notice that the proof on the previous slide establishes that
S(n) is uncomputable, rather than Turing-uncomputable.

• In particular, the proof assumed that Σ(n) is uncomputable,
rather than just Turing-uncomputable.

• So, the proof appeals to the Church-Turing Thesis, which
states that anything that is computable is Turing-
computable (so: since we know that Σ(n) is Turing-
uncomputable, Σ(n) is not computable).

• Many of the other proofs you’ll find in the rest of this
presentation make similar use of the Church-Turing
Thesis, i.e. from now on we’ll simply equate computability
with Turing-computability.

Problem Reductions

• The proof from 2 slides ago is a good example of
reducing one problem into another.

• Problem A reduces to problem B if being to solve
problem B allows you to solve problem A.

• So, if problem A reduces to problem B, then if we
know that problem A cannot be solved, then we
know that B cannot be solved either.

• In the proof, we reduced the computability of Σ(n)
to the computability of S(n).

The Busy Beaver Problem:
General Version

• In general, the busy beaver problem is to find the ‘most
productive’ Turing machine with n states and m symbols.

• The ‘productivity’ of a Turing machine can be defined in
many ways:
– The number of steps taken (‘time’)
– The number of symbols written (‘f(n)’)
– The number of cells moved away from the starting cell (‘space’)
– Etc.

• Any of these kinds of functions can be found to be
uncomputable.

• For any particular problem you can show this either by a
direct proof, or by reducing it into another problem that
you already established to be uncomputable.

Upper Bounds

• Another interesting thing to note about the proof
(from 4 slides ago) is that it uses the technique of
using upper bounds: if we know an upper bound to
the number of steps a machine can take before
halting (such as S(n)!), then we can determine any
machine with n states to be a halter or non-halter
simply by running it: any machine that is still
running after S(n) steps is a non-halter.

• So, once you have discarded all non-halters, you
can simply run all halters to completion to figure
out any kind of Busy Beaver function you want.

Connection Halting Problem and
Busy Beaver Problem

• In fact, there seems to be an intimate connection between
the Busy Beaver Problem and the Halting Problem.

• Indeed, one might be inclined to say that the Halting
Problem is immediately be solvable if S(n) is computable
… but that would be a mistake!
– Remember that S(n) gives an upper-bound to the number of steps

taken by all machines with n states … when started on an empty
tape!

– So, it does not give an upper-bound taken by all machines with n
states given any kind of input tape, and the Halting function
considers input tapes of any kind.

• Still, it does turn out that the two problems are intimately
related! But we’ll have to do a bit of work …

If Halting Problem is solvable,
then Busy Beaver Problem is.

• One connection is obvious: If the Halting Problem
is solvable, then (any) Busy Beaver Problem is
solvable.

• That is, Σ(n) (or S(n), or what have you) can be
computed if we can solve the halting problem:
Simply go through all the finitely many machines
with n states, use the halting solution to discard
any non-halters, and simply run all others to
completion to get the desired answer.

• OK, but what about the other way? That one is
more difficult …

Empty Tape Halting Problem
• Let us define the Empty Tape Halting Problem

(ETHP) as the problem of determining for any
machine M whether or not it will halt when started
on an empty tape.

• Now, it is clear that if the general Halting Problem
would be solvable, then ETHP would be solvable
as well.

• But, does the unsolvability of the Halting problem
imply the unsolvability of ETHP?

Uncomputability of The Empty
Tape Halting Problem

• Yes! First, we can devise a routine that, given any M and
T, constructs a machine MT that, when given an empty
tape, first puts T on the tape, and then runs M on that tape.
Let’s call this the Create-MT routine.
– Note: This routine is far from easy to write as a Turing-machine

routine, but it is intuitively obvious that we should be able to do
this, i.e. that such a routine does exist.

• Now let us assume the Empty Tape Halting Problem is
solvable. Then the Halting Problem is solvable as well:

Create-MT ETHP
[M, T] [MT] [1] if M with T halts

[0] if M with T halts

Empty Tape Halting Problem and
S(n)

• Claim: The Empty Tape Halting Problem is
solvable iff the S(n) is computable.

• Proof:
– If the ETHP is solvable, then we can figure out S(n) by

discarding all non-halters, running all others to
completion, and determine max.

– If S(n) is computable, then ETHP is solvable: simply
start running any machine on an empty tape, and if it is
still running after S(n) steps, then it is a non-halter,
otherwise it is a halter.

S(n) and Σ(n)

• Earlier we saw that Σ(n) is computable if S(n) is
computable, since S(n) provides an upper-bound to the
possible number of steps taken. Does the other way around
also hold?

• Yes. For any machine M1 that takes n steps before halting
with [k] when started on an empty tape, you can construct
a machine M2 that simulates M1, but also prints out a 1 for
every step that M1 makes, and where the number of states
of M2 is a linear (and thus computable!) function of the
number of states of M1
– E.g. for the quintuple formalization, you can show that if M1 has n

states, then such a M2 can be constructed with 20n states (see
Julstrom)

S(n) and Σ(n) (Continued)

• So, supposing S(M1) = S(n) (i.e. supposing M1 is a
machine with n states that makes the most steps
for any machine with n states) we thus have that
S(n) ≤ Σ(f(n)) for some computable f(n).

• So, if Σ(n) is computable, then S(n) becomes
computable too: simply start any machine with n
states on an empty tape, and any machine that still
runs after having taken Σ(f(n)) steps must be a
non-halter. For all halters, simply determine the
maximum number of steps taken. In short, Σ(f(n))
provides an upper-bound for S(n)!

Summing it all Up: Busy Beaver
and Halting Problem

• We have shown that:
– The Halting Problem is solvable iff the Empty

Tape Haling Problem is solvable.
– The Empty Tape Halting problem is solvable iff

S(n) is computable.
– S(n) is computable iff Σ(n) is computable.

• So, these are all equivalent statements!
• In particular, all of these problems

(functions) are unsolvable (uncomputable)!

More on Upper Bounds

• Suppose that there is some computable function
f(n) that provides an upper-bound to the maximum
number of steps that a machine with n states can
take, starting on an empty tape. In short, suppose
that for all n: S(n) ≤ f(n).

• Well, then S(n) would be computable too: all
machines that still run after f(n) are non-halters, so
S(n) can be determined by examining all halters.

• Since S(n) is not computable, we know that no
such function exists: there is no computable
upper-bound for S(n)!

So what?

• So this means that S(n) is a function that ‘grows
faster’ than any computable function.

• And, you can easily come up with some
computable functions that grow crazy fast.

• Well, S(n) will grow even faster than that!
• Moreover, since we found that S(n) ≤ Σ(f(n)) for

some computable f(n), we know that Σ(n) also
grows faster than any computable function!
(otherwise, we’d once again have a computable
upper-bound for S(n)).

Exhibit A: Established values for
Σ(n) (for quintuple TM’s)

n Σ(n)
1 1 (trivial)
2 4 (easy)
3 6 (Lin and Rado)
4 13 (Brady)
5 >= 4098 (Marxen et al.)
6 > 3.514 * 1018276 (Marxen et al.)

7 Huge!
8 Insane!!

Problems in Determining Σ(n)

• First, search space is fairly big (see next
slide):
– Explicit halting state: |M(n)| = (4n + 4)2n
– Implicit halting state: |M(n)| = (4n + 1)2n

• But most importantly, the behavior of even

small machines is strange and hard to grasp,
and we have a hard time figuring out
whether they halt or not!

Size of Search Space

For every state:

0

1
For every transition:

Quintuple:
0 or 1 and L or R

Quadruple:
0 or 1 or L or R

⇒ 2*2 = 4 possibilities

⇒ 4 possibilities

Explicit: n + 1 possible
new states with full transition

Implicit: n possible new states
with full transition + empty
transition to halting state

n (4n + 4)2n (4n + 1)2n

1 64 25
2 20,736 6,561
3 16,777,216 4,826,809
4 ~2.56*1010 >109

5 >1013 >1013

6 > 1017 > 1016 In all cases: 2n state-symbol pairs

Strange Behavior
• For n = 5 (quintuple), some machines only come to a halt

after over 47 million steps (this is the suspected shifting
champion … but we haven’t been able to prove that …
yet?)

• For n = 6, some machines halt after more than 1036534
steps! (yes, you read that correctly!)

• In 1983, Brady conjectured that it’s impossible to classify
all machines with n = 5

• In 2012, we have indeed still not been able to settle the
n=5 case … but people are getting close.

• Still, it’s unlikely we’ll ever settle the n = 6 case.
• And it’s a virtual certainty we’ll never settle the n = 7 case!

Attacking the
Busy Beaver Function

• Still, people are trying to determine Busy
Beaver values.

• This is done by:
– Reducing the search space
– Writing custom-made computer programs to

simulate the behavior of Turing-machines and
detecting knowable forms of non-halting
behavior.

Reducing the Search Space

• The search space can be reduced in a
number of ways (see Appendix):
– Perform some initial analysis to rule out certain

corners of the search space
– Only consider one machine of a set of machines

that can be shown to have equal productivity
– Use Tree normalization method to create only

‘relevant’ machines.

Halters, Non-halters, and
Holdouts

• Since the halting problem cannot be solved in
general, any practical algorithm A that does try to
figure out halting behavior is such that for any
machine M:
– A eventually declares that M halts (M is a halter)
– A eventually declares that M does not halt (M is a non-

halter)
– A eventually declares that it doesn’t know whether M

halts or not (M is a holdout)

Taking Care of the Holdouts

• In order to take care of the holdouts, do the
following:
– Simulate a holdout for some number of steps
– Observe the behavior, and see if there is some pattern

present which one can use to prove that the machine
will halt or not

– Try and generalize the pattern of behavior, and
incorporate it into the original algorithm to obtain a
new and improved algorithm

– If there are still holdouts left with the new algorithm,
repeat this routine

History of Σ(3)

• Rado was at first very pessimistic:
– “… there is no evidence that any known approach will yield the

answer, even if we avail ourselves of high-speed computers and
elaborate programs.” (Rado, 1963)

• Indeed, it turns out he was too pessimistic:
– “The solution of this quite special problem was attempted by

several competent mathematicians and programmers, by means of
increasingly elaborate computer programs.” (Lin and Rado, 1965)

• Lin and Rado reduced the 56871 holdouts from 1963 to 40
holdouts in 1965, and analyzed those last 40 by hand to
determine Σ(3).

History of Σ(4)
• Still:

– “As regards Σ(4), … the situation seems to be entirely hopeless at
present.” (Rado, 1963)

• However!
– “More than 18 other programs were written for various

housekeeping purposes, simulating and displaying machine
behavior, exploring other reduction and filtering possibilities, etc.
In all, at least 53 files were created and maintained for the project.
Keeping track of what resembled a large scientific experiment
became a major task in itself.” (Brady, 1983)

• Brady obtained 0 holdouts for n = 3, and 218 holdouts for
n = 4. These “were examined by means of voluminous
printouts of their histories along with some program
extracted features. It was determined to the author’s
satisfaction that none of these machines will ever stop.”

Taxonomy of BB Problems
BB

Quintuples Quadruples

Anything
goes

Standard
config.

Anything
goes

Explicit
Halt
State

Σ(n)
(Rado)

Explicit
Halt
State

Implicit
Halt
State

Explicit
Halt
State

Implicit
Halt
State ?

R(n)

? ?

B(n)
(Boolos &
Jeffrey,
Turing’s
World)

P(n)
(Pereira
et al.)

O(n)
(Oberschelp
et al.)

The Story of the Quadruples:
R(n), O(n), P(n), and B(n)

n R(n) O(n) P(n) B(n)
1 1 1 1 1
2 2 2 2 2
3 4 3 4 3
4 8 8 7 5
5 16 15 16 11
6 >= 240 >=239 >= 21 >= 25
7 ? ? >= 102 >= 196
8 ? ? >= 384 >= 672

O(n) >= B(n)

P(n) >= B(n)

R(n) >= P(n)

R(n) = O(n) or
 O(n) + 1

Values and
records established
by RPI research
team in 2005!

References
• Rado, “On Non-Computable Functions”, The Bell System

Technical Journal, 41(3), pp. 877-884, 1962
• Lin and Rado, “Computer Studies of Turing Machine

Problems”, Journal of the ACM, 12(2), pp. 196-212, 1965
• Brady, “The Determination of the Value of Rado’s

Noncomputable Function Σ(k) for Four-State Turing
Machines”, Mathematics of Computation, 40(162), pp. 647-
665, 1983

• Oberschelp et al., “Castor Quadruplurum”, Archive for
Mathematical Logic, 27, pp. 35-44, 1988

• Marxen and Buntrock, “Attacking the Busy Beaver 5”,
Bulletin of the EATCS, 40, pp. 247-251, 1990

• Julstrom, “A bound on the Shift Function in Terms of the Busy
Beaver function”, ACM SIGACT, Vol. 23, Issue 3, 1992

Appendix A: Analyses of TM’s

Productively Equivalents

• Two machines M and M’ that have the same
productivity are said to be productively
equivalent. We write M ≡ M’.

• Obviously, one only needs to consider 1 machine
out of each of the equivalence classes as defined
by ≡.

• Two important ways in which M ≡ M’:
– M and M’ are structurally equivalent
– M and M’ are functionally equivalent

Structural Equivalence

0:1

1 2

1:R

3

0:1

1 3

1:R

2 ≡

• Two machines M1 and M2 are structurally
equivalent iff M1’s states can be renamed to form
M2. Example:

• With n states, there can be (n-1)! different but
structurally equivalent graphs, so this becomes a
significant reduction.

Further Useful Structural
Considerations

• A machine is a ‘no path machine’ iff there exists
no path from the start state to all other states
– It is easily shown that BB(n) < BB(n+1) for any variant

of BB. This can be used to show that any no path
machine is not a Busy Beaver.

• A machine is a ‘fully connected machine’ iff it
contains a fully connected subset of states S (not
containing the halting state) such that every
transition from a state in S goes to a state in S
– Any fully connected machine is not a Busy Beaver

Functional Equivalence

1:1

1 2

1:L

≡

• Two machines M1 and M2 are functionally
equivalent iff M1(I) = M2(I) for any input tape I.
Example:

• With productivity being defined as the number of
1’s left on the output tape when starting on an
empty tape, M1 ≡ M2 if M1 and M2 are
functionally equivalent (for many other definitions
of productivity this is not the case!).

1:L

1 2

1:L

Useful Equivalences

s:s

i j

s:A

k

s:A

i j

s:A

k ≡

s:s’

i j

s’:s

k

s:s

i j

s’:s

k ≡

Further Useful Functional
Considerations

• Some types of machines:
– A machine is a ‘empty tape machine’ iff starting on an empty tape,

it reaches an empty tape after 1 or more steps
– A machine is a ‘identical state machine’ iff it contains two states

that have exactly the same transitions
– A machine is a ‘unused transition machine’ iff it contains a

transition that does not get used when starting on an empty tape
– A machine is a ‘s:s machine’ iff it contains a s:s transition
– A machine is a ‘s:s’+s’:s machine’ iff it contains a s:s’ transition to

a state that has a s’:s transition
– A machine M is a ‘mirror machine’ of a machine M’ iff swapping

all L’s and R’s in the transitions of M results in M’

Tree Normalization: Step-by-
Step Machine Construction

start

0:1 0:0 … 0:R

1 1 1 2

1:R
1 2

0:1
…

Etc.

The tree normalization method generates candidate machines by
adding transitions only as needed. This method inherently avoids
considering machines that are different but structurally equivalent,
unused transition machines, and no path machines.

0:R
1 2

0:1
… ?

Reducing the Number of
Machines

• The number of machines generated during the tree
normalization method can be further reduced
(greatly) by using other structural and functional
considerations:
– Any fully connected machine is not a Busy Beaver
– Any empty tape, s:s, or s:s’+s’:s machine need not be

considered, as any machine of any such type can be
shown to either be a non-halter, or be functionally
equivalent to a machine that is not of any such type

– Only one of two mirror machines need be considered,
as long as productivity is modified accordingly (i.e. it’s
ok to halt at the rightmost 1 of a consecutive string of
1’s on an otherwise blank tape)

	The Busy Beaver Problem
	The Busy Beaver Problem
	Variations
	(n) is Turing-Uncomputable
	The Shifting Problem
	S(n) is Turing-Uncomputable
	S(n) is Uncomputable:�Alternative Proof
	Computability, Uncomputability, and the Church-Turing Thesis
	Problem Reductions
	The Busy Beaver Problem:�General Version
	Upper Bounds
	Connection Halting Problem and Busy Beaver Problem
	If Halting Problem is solvable, then Busy Beaver Problem is.
	Empty Tape Halting Problem
	Uncomputability of The Empty Tape Halting Problem
	Empty Tape Halting Problem and S(n)
	S(n) and (n)
	S(n) and (n) (Continued)
	Summing it all Up: Busy Beaver and Halting Problem
	More on Upper Bounds
	So what?
	Exhibit A: Established values for (n) (for quintuple TM’s)
	Problems in Determining (n)
	Size of Search Space
	Strange Behavior
	Attacking the �Busy Beaver Function
	Reducing the Search Space
	Halters, Non-halters, and Holdouts
	Taking Care of the Holdouts
	History of (3)
	History of (4)
	Taxonomy of BB Problems
	The Story of the Quadruples:�R(n), O(n), P(n), and B(n)
	References
	Appendix A: Analyses of TM’s
	Productively Equivalents
	Structural Equivalence
	Further Useful Structural Considerations
	Functional Equivalence
	Useful Equivalences
	Further Useful Functional Considerations
	Tree Normalization: Step-by-Step Machine Construction
	Reducing the Number of Machines

