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The Busy Beaver Problem 

• n: number of states 
• M(n): set of TM’s with n states and binary 

alphabet (only 0’s and 1’s) 
• [k]: Configuration of having a block of k 

consecutive 1’s on an otherwise blank (all 0) tape, 
and with head at leftmost 1. 

• e: empty tape (all 0’s) 
• Σ(M): Σ(M) = k if machine M, when started on e, 

halts with [k]. Otherwise, Σ(M) = 0. 
• Busy Beaver Problem: Find Σ(n) = max {Σ(M) | M 
∈ M(n)} 



Variations 
• We can define a variety of Busy Beaver problems: 

– Do we use the quadruple or quintuple formalization? 
– Do we use a binary alphabet or more than 2 symbols? 
– How does the machine come to a halt? 

• Explicit halting state: machine halts by a transition to an explicit 
halting (in which case halting state does not get counted towards n) 

• Implicit halting state: machine halts by the lack of a transition for 
current state and symbol 

– Are there any restrictions on the output configuration? 
• Standard configuration: head positioned at leftmost 1 (or other non-

blank symbol) of consecutive string of 1’s on otherwise empty tape 
• Anything goes (head does not need to be at leftmost 1, and 1’s may be 

scattered all over tape) 

• For now, let’s stick to a binary alphabet and require a 
standard configuration. But all proofs on the next slides 
can be modified to accommodate all other types. 



Σ(n) is Turing-Uncomputable 

• Proof by Contradiction: Suppose there is some 
Turing-Machine Σ  that computes Σ(n). Then 
consider the following Turing-machine Q, where k 
is the number of states of the last 3 components: 

Σ +1 Double Write k 

Q 

e [k] [2k] [Σ(2k)] [Σ(2k) +1] 

Can be implemented using k states. So, Q has 2k states … 
and outputs Σ(2k) +1 when started on an empty tape!  Whoopsie! 



The Shifting Problem 

• S(M): S(M) = m if machine M, when started on e, 
takes m steps before it halts with [k] for some k. 
Otherwise, S(M) = 0. 

• Shifting Problem: Find S(n) = max {S(M) | M ∈ 
M(n)} 



S(n) is Turing-Uncomputable 

• Proof by Contradiction: Suppose there is some 
Turing-Machine S that computes S(n). Then 
consider the following Turing-machine Q, where k 
is the number of states of the last 3 components: 

S Clean Double Write k 

Q 

e [k] [2k] [S(2k)] e 

Cleaning the tape will take at least S(2k) steps. So, Q has 2k states 
…but takes  more than S(2k) steps before halting!  Whoopsie! 



S(n) is Uncomputable: 
Alternative Proof 

• The uncomputability of S(n) can also be 
derived from the uncomputability of Σ(n): 

• Suppose S(n) is computable. Then Σ(n) can 
be determined simply by running all of the 
finitely many Turing-machines M with n 
states, starting on e. If a Turing-machine is 
still running after S(n) steps, you know it is 
a non-halter. For all the others Σ(M) can be 
determined, and now simply take the max. 



Computability, Uncomputability, 
and the Church-Turing Thesis 

• Notice that the proof on the previous slide establishes that 
S(n) is uncomputable, rather than Turing-uncomputable. 

• In particular, the proof assumed that Σ(n) is uncomputable, 
rather than just Turing-uncomputable. 

• So, the proof appeals to the Church-Turing Thesis, which 
states that anything that is computable is Turing-
computable (so: since we know that Σ(n) is Turing-
uncomputable, Σ(n) is not computable). 

• Many of the other proofs you’ll find in the rest of this 
presentation make similar use of the Church-Turing 
Thesis, i.e. from now on we’ll simply equate computability 
with Turing-computability. 



Problem Reductions 

• The proof from 2 slides ago is a good example of 
reducing one problem into another. 

• Problem A reduces to problem B if being to solve 
problem B allows you to solve problem A. 

• So, if problem A reduces to problem B, then if we 
know that problem A cannot be solved, then we 
know that B cannot be solved either. 

• In the proof, we reduced the computability of Σ(n) 
to the computability of S(n). 



The Busy Beaver Problem: 
General Version 

• In general, the busy beaver problem is to find the ‘most 
productive’ Turing machine with n states and m symbols. 

• The ‘productivity’ of a Turing machine can be defined in 
many ways: 
– The number of steps taken (‘time’) 
– The number of symbols written (‘f(n)’) 
– The number of cells moved away from the starting cell (‘space’) 
– Etc. 

• Any of these kinds of functions can be found to be 
uncomputable. 

• For any particular problem you can show this either by a 
direct proof, or by reducing it into another problem that 
you already established to be uncomputable. 



Upper Bounds 

• Another interesting thing to note about the proof 
(from 4 slides ago) is that it uses the technique of 
using upper bounds: if we know an upper bound to 
the number of steps a machine can take before 
halting (such as S(n)!), then we can determine any 
machine with n states to be a halter or non-halter 
simply by running it: any machine that is still 
running after S(n) steps is a non-halter. 

• So, once you have discarded all non-halters, you 
can simply run all halters to completion to figure 
out any kind of Busy Beaver function you want. 



Connection Halting Problem and 
Busy Beaver Problem 

• In fact, there seems to be an intimate connection between 
the Busy Beaver Problem and the Halting Problem. 

• Indeed, one might be inclined to say that the Halting 
Problem is immediately be solvable if S(n) is computable 
… but that would be a mistake! 
– Remember that S(n) gives an upper-bound to the number of steps 

taken by all machines with n states … when started on an empty 
tape!  

– So, it does not give an upper-bound taken by all machines with n 
states given any kind of input tape, and the Halting function 
considers input tapes of any kind. 

• Still, it does turn out that the two problems are intimately 
related!  But we’ll have to do a bit of work … 



If Halting Problem is solvable, 
then Busy Beaver Problem is. 

• One connection is obvious: If the Halting Problem 
is solvable, then (any) Busy Beaver Problem is 
solvable. 

• That is, Σ(n) (or S(n), or what have you) can be 
computed if we can solve the halting problem: 
Simply go through all the finitely many machines 
with n states, use the halting solution to discard 
any non-halters, and simply run all others to 
completion to get the desired answer. 

• OK, but what about the other way? That one is 
more difficult … 



Empty Tape Halting Problem 
• Let us define the Empty Tape Halting Problem 

(ETHP) as the problem of determining for any 
machine M whether or not it will halt when started 
on an empty tape. 

• Now, it is clear that if the general Halting Problem 
would be solvable, then ETHP would be solvable 
as well.  

• But, does the unsolvability of the Halting problem 
imply the unsolvability of ETHP? 



Uncomputability of The Empty 
Tape Halting Problem 

• Yes! First, we can devise a routine that, given any M and 
T, constructs a machine MT that, when given an empty 
tape, first puts T on the tape, and then runs M on that tape. 
Let’s call this the Create-MT routine.  
– Note: This routine is far from easy to write as a Turing-machine 

routine, but it is intuitively obvious that we should be able to do 
this, i.e. that such a routine does exist. 

• Now let us assume the Empty Tape Halting Problem is 
solvable. Then the Halting Problem is solvable as well: 
 

Create-MT ETHP 
[M, T] [MT] [1]  if M with T halts 

[0]  if M with T halts 



Empty Tape Halting Problem and 
S(n) 

• Claim: The Empty Tape Halting Problem is 
solvable iff the S(n) is computable. 

• Proof:  
– If the ETHP is solvable, then we can figure out S(n) by 

discarding all non-halters, running all others to 
completion, and determine max. 

– If S(n) is computable, then ETHP is solvable: simply 
start running any machine on an empty tape, and if it is 
still running after S(n) steps, then it is a non-halter, 
otherwise it is a halter.  



S(n) and Σ(n)  

• Earlier we saw that Σ(n) is computable if S(n) is 
computable, since S(n) provides an upper-bound to the 
possible number of steps taken. Does the other way around 
also hold? 

• Yes. For any machine M1 that takes n steps before halting 
with [k] when started on an empty tape, you can construct 
a machine M2 that simulates M1, but also prints out a 1 for 
every step that M1 makes, and where the number of states 
of M2 is a linear (and thus computable!) function of the 
number of states of M1 
– E.g. for the quintuple formalization, you can show that if M1 has n 

states, then such a M2 can be constructed with 20n states (see 
Julstrom) 



S(n) and Σ(n) (Continued) 

• So, supposing S(M1) = S(n) (i.e. supposing M1 is a 
machine with n states that makes the most steps 
for any machine with n states) we thus have that 
S(n) ≤ Σ(f(n)) for some computable f(n). 

• So, if Σ(n) is computable, then S(n) becomes 
computable too: simply start any machine with n 
states on an empty tape, and any machine that still 
runs after having taken Σ(f(n)) steps must be a 
non-halter. For all halters, simply determine the 
maximum number of steps taken. In short, Σ(f(n)) 
provides an upper-bound for S(n)! 



Summing it all Up: Busy Beaver 
and Halting Problem 

• We have shown that: 
– The Halting Problem is solvable iff the Empty 

Tape Haling Problem is solvable. 
– The Empty Tape Halting problem is solvable iff 

S(n) is computable. 
– S(n) is computable iff Σ(n) is computable. 

• So, these are all equivalent statements!  
• In particular, all of these problems 

(functions) are unsolvable (uncomputable)! 



More on Upper Bounds 

• Suppose that there is some computable function 
f(n) that provides an upper-bound to the maximum 
number of steps that a machine with n states can 
take, starting on an empty tape. In short, suppose 
that for all n: S(n) ≤ f(n). 

• Well, then S(n) would be computable too: all 
machines that still run after f(n) are non-halters, so 
S(n) can be determined by examining all halters. 

• Since S(n) is not computable, we know that no 
such function exists: there is no computable 
upper-bound for S(n)! 



So what? 

• So this means that S(n) is a function that ‘grows 
faster’ than any computable function. 

• And, you can easily come up with some 
computable functions that grow crazy fast. 

• Well, S(n) will grow even faster than that! 
• Moreover, since we found that S(n) ≤ Σ(f(n)) for 

some computable f(n), we know that Σ(n) also 
grows faster than any computable function! 
(otherwise, we’d once again have a computable 
upper-bound for S(n)). 



Exhibit A: Established values for 
Σ(n) (for quintuple TM’s) 

n Σ(n) 
1 1 (trivial) 
2 4 (easy) 
3 6 (Lin and Rado) 
4 13 (Brady) 
5 >= 4098 (Marxen et al.) 
6 > 3.514 * 1018276 (Marxen et al.) 

7 Huge! 
8 Insane!! 



Problems in Determining Σ(n) 

• First, search space is fairly big (see next 
slide):  
– Explicit halting state: |M(n)| = (4n + 4)2n 
– Implicit halting state: |M(n)| = (4n + 1)2n 

 
• But most importantly, the behavior of even 

small machines is strange and hard to grasp, 
and we have a hard time figuring out 
whether they halt or not! 



Size of Search Space 

For every state: 

0 

1 
For every transition: 

Quintuple:  
0 or 1 and L or R 

Quadruple:  
0 or 1 or L or R 

⇒ 2*2 = 4 possibilities 

⇒ 4 possibilities 

Explicit: n + 1 possible  
new states with full transition 

Implicit: n possible new states  
with full transition + empty  
transition to halting state 

n (4n + 4)2n (4n + 1)2n 

1 64 25 
2 20,736 6,561 
3 16,777,216 4,826,809 
4 ~2.56*1010 >109 

5 >1013 >1013 

6 > 1017 > 1016 In all cases: 2n state-symbol pairs 



Strange Behavior 
• For n = 5 (quintuple), some machines only come to a halt 

after over 47 million steps (this is the suspected shifting 
champion … but we haven’t been able to prove that … 
yet?) 

• For n = 6, some machines halt after more than 1036534 
steps! (yes, you read that correctly!) 

• In 1983, Brady conjectured that it’s impossible to classify 
all machines with n = 5 

• In 2012, we have indeed still not been able to settle the 
n=5 case … but people are getting close. 

• Still, it’s unlikely we’ll ever settle the n = 6 case. 
• And it’s a virtual certainty we’ll never settle the n = 7 case! 



Attacking the  
Busy Beaver Function 

• Still, people are trying to determine Busy 
Beaver values. 

• This is done by: 
– Reducing the search space 
– Writing custom-made computer programs to 

simulate the behavior of Turing-machines and 
detecting knowable forms of non-halting 
behavior. 
 



Reducing the Search Space 

• The search space can be reduced in a 
number of ways (see Appendix): 
– Perform some initial analysis to rule out certain 

corners of the search space 
– Only consider one machine of a set of machines 

that can be shown to have equal productivity 
– Use Tree normalization method to create only 

‘relevant’ machines. 
 



Halters, Non-halters, and 
Holdouts 

• Since the halting problem cannot be solved in 
general, any practical algorithm A that does try to 
figure out halting behavior is such that for any 
machine M: 
– A eventually declares that M halts (M is a halter) 
– A eventually declares that M does not halt (M is a non-

halter) 
– A eventually declares that it doesn’t know whether M 

halts or not (M is a holdout) 



Taking Care of the Holdouts 

• In order to take care of the holdouts, do the 
following: 
– Simulate a holdout for some number of steps 
– Observe the behavior, and see if there is some pattern 

present which one can use to prove that the machine 
will halt or not 

– Try and generalize the pattern of behavior, and 
incorporate it into the original algorithm to obtain a 
new and improved algorithm 

– If there are still holdouts left with the new algorithm, 
repeat this routine 



History of Σ(3) 

• Rado was at first very pessimistic: 
– “… there is no evidence that any known approach will yield the 

answer, even if we avail ourselves of high-speed computers and 
elaborate programs.” (Rado, 1963)  

• Indeed, it turns out he was too pessimistic: 
– “The solution of this quite special problem was attempted by 

several competent mathematicians and programmers, by means of 
increasingly elaborate computer programs.” (Lin and Rado, 1965) 

• Lin and Rado reduced the 56871 holdouts from 1963 to 40 
holdouts in 1965, and analyzed those last 40 by hand to 
determine Σ(3). 



History of Σ(4) 
• Still: 

– “As regards Σ(4), … the situation seems to be entirely hopeless at 
present.” (Rado, 1963) 

• However! 
– “More than 18 other programs were written for various 

housekeeping purposes, simulating and displaying machine 
behavior, exploring other reduction and filtering possibilities, etc. 
In all, at least 53 files were created and maintained for the project. 
Keeping track of what resembled a large scientific experiment 
became a major task in itself.” (Brady, 1983) 

• Brady obtained 0 holdouts for n = 3, and 218 holdouts for 
n = 4. These “were examined by means of voluminous 
printouts of their histories along with some program 
extracted features. It was determined to the author’s 
satisfaction that none of these machines will ever stop.” 



Taxonomy of BB Problems 
BB 

Quintuples Quadruples 

Anything  
goes 

Standard  
config. 

Anything  
goes 

Explicit 
Halt 
State 

Σ(n)  
(Rado) 

Explicit 
Halt 
State 

Implicit 
Halt 
State 

Explicit 
Halt 
State 

Implicit 
Halt 
State ? 

R(n) 

? ? 

B(n)  
(Boolos & 
Jeffrey, 
Turing’s 
World) 

P(n)  
(Pereira 
et al.) 

O(n)  
(Oberschelp 
et al.) 



The Story of the Quadruples: 
R(n), O(n), P(n), and B(n) 

n R(n) O(n) P(n) B(n) 
1 1 1 1 1 
2 2 2 2 2 
3 4 3 4 3 
4 8 8 7 5 
5 16 15 16 11 
6 >= 240 >=239 >= 21  >= 25 
7 ? ? >= 102 >= 196 
8 ? ? >= 384 >= 672 

O(n) >= B(n) 

P(n) >= B(n) 

R(n) >= P(n) 

R(n) = O(n) or 
 O(n) + 1 

Values and  
records established 
by RPI research 
team in 2005! 
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Appendix A: Analyses of TM’s 



Productively Equivalents 

• Two machines M and M’ that have the same 
productivity are said to be productively 
equivalent. We write M ≡ M’. 

• Obviously, one only needs to consider 1 machine 
out of each of the equivalence classes as defined 
by ≡. 

• Two important ways in which M ≡ M’: 
– M and M’ are structurally equivalent  
– M and M’ are functionally equivalent 



Structural Equivalence 

0:1 

1 2 

1:R 

3 

0:1 

1 3 

1:R 

2 ≡ 

• Two machines M1 and M2 are structurally 
equivalent iff M1’s states can be renamed to form 
M2. Example: 

• With n states, there can be (n-1)! different but 
structurally equivalent graphs, so this becomes a 
significant reduction. 



Further Useful Structural 
Considerations 

• A machine is a ‘no path machine’ iff  there exists 
no path from the start state to all other states 
– It is easily shown that BB(n) < BB(n+1) for any variant 

of BB. This can be used to show that any no path 
machine is not a Busy Beaver. 

• A machine is a ‘fully connected machine’ iff it 
contains a fully connected subset of states S (not 
containing the halting state) such that every 
transition from a state in S goes to a state in S 
– Any fully connected machine is not a Busy Beaver 



Functional Equivalence 

1:1 

1 2 

1:L 

≡ 

• Two machines M1 and M2 are functionally 
equivalent iff M1(I) = M2(I) for any input tape I. 
Example: 

• With productivity being defined as the number of 
1’s left on the output tape when starting on an 
empty tape, M1 ≡ M2 if M1 and M2 are 
functionally equivalent (for many other definitions 
of productivity this is not the case!). 

1:L 

1 2 

1:L 



Useful Equivalences 

s:s 

i j 

s:A 

k 

s:A 

i j 

s:A 

k ≡ 

s:s’ 

i j 

s’:s 

k 

s:s 

i j 

s’:s 

k ≡ 



Further Useful Functional 
Considerations 

• Some types of machines: 
– A machine is a ‘empty tape machine’ iff starting on an empty tape, 

it reaches an empty tape after 1 or more steps 
– A machine is a ‘identical state machine’ iff it contains two states 

that have exactly the same transitions 
– A machine is a ‘unused transition machine’ iff it contains a 

transition that does not get used when starting on an empty tape  
– A machine is a ‘s:s machine’ iff it contains a s:s transition 
– A machine is a ‘s:s’+s’:s machine’ iff it contains a s:s’ transition to 

a state that has a s’:s transition 
– A machine M is a ‘mirror machine’ of a machine M’ iff swapping 

all L’s and R’s in the transitions of M results in M’  



Tree Normalization: Step-by-
Step Machine Construction 

start 

0:1 0:0 … 0:R 

1 1 1 2 

1:R 
1 2 

0:1 
… 

Etc. 

The tree normalization method generates candidate machines by 
adding transitions only as needed. This method inherently avoids 
considering machines that are different but structurally equivalent, 
unused transition machines, and no path machines. 

0:R 
1 2 

0:1 
… ? 



Reducing the Number of 
Machines 

• The number of machines generated during the tree 
normalization method can be further reduced 
(greatly) by using other structural and functional 
considerations: 
– Any fully connected machine is not a Busy Beaver 
– Any empty tape, s:s, or s:s’+s’:s machine need not be 

considered, as any machine of any such type can be 
shown to either be a non-halter, or be functionally 
equivalent to a machine that is not of any such type 

– Only one of two mirror machines need be considered, 
as long as productivity is modified accordingly (i.e. it’s 
ok to halt at the rightmost 1 of a consecutive string of 
1’s on an otherwise blank tape)  
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